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Abstract

We present a new method for proving strong lower bounds in communication complexity. This method is
based on the notion of the conditional information complexity of a function which is the minimum amount
of information about the inputs that has to be revealed by a communication protocol for the function.
While conditional information complexity is a lower bound on communication complexity, we show that it
also admits a direct sum theorem. Direct sum decomposition reduces our task to that of proving conditional
information complexity lower bounds for simple problems (such as the AND of two bits). For the latter, we
develop novel techniques based on Hellinger distance and its generalizations.

Our paradigm leads to two main results:
(1) An improved lower bound for the multi-party set-disjointness problem in the general communication

complexity model, and a nearly optimal lower bound in the one-way communication model. As a
consequence, we show that for any real k42; approximating the kth frequency moment in the data stream

model requires essentially Oðn1�2=kÞ space; this resolves a conjecture of Alon et al. (J. Comput. System Sci.
58(1) (1999) 137).

(2) A lower bound for the Lp approximation problem in the general communication model; this solves an

open problem of Saks and Sun (in: Proceedings of the 34th Annual ACM Symposium on Theory of
Computing (STOC), 2002, pp. 360–369). As a consequence, we show that for p42; approximating the Lp

norm to within a factor of ne in the data stream model with constant number of passes requires Oðn1�4e�2=pÞ
space.
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1. Introduction

Alice and Bob are given a bit each and they wish to compute the and of their bits by
exchanging messages that reveal as little information about their bits as possible. In this paper we
address problems of this kind, where we study the amount of information revealed in a
communication protocol. Our investigations lead to a new lower bound method in communica-
tion complexity.
Communication complexity [Yao79] quantifies the amount of communication required among

two or more players to compute a function, where each player holds only a portion of the
function’s input. This framework has been used to solve a variety of problems in diverse areas,
ranging from circuit complexity and time-space tradeoffs to pseudorandomness—see [KN97].
Some recent applications of communication complexity arise in the areas of massive data
set algorithms (see below) and in the design of combinatorial auctions [NS01].
A computation model that has been very useful for designing efficient algorithms for massive

data sets is the data stream model. A data stream algorithm makes a few passes (usually one) over
its input and is charged for the amount of read–write workspace it uses. Using randomization and
approximation, space-efficient data stream algorithms have been developed for many problems
[AMS99,FKSV02,GMMO00,Ind00,GGI+02,AJKS02]. The data stream model generalizes the
restrictive read-once oblivious branching program model for which strong lower bounds are
known [Bry86,Weg87]; however, since data stream algorithms are allowed to be both probabilistic
and approximate, proving space lower bounds for natural problems is challenging.
Communication complexity offers a framework in which one can obtain non-trivial space lower

bounds for data stream algorithms. The relationship between communication complexity and the
data stream model is natural—the workspace of the data stream algorithm corresponds to the
amount of communication in a suitable communication protocol. Lower bounds for data stream
algorithms have been shown both via generalization of existing methods (e.g., [AMS99]) and by
the invention of new techniques (e.g., [SS02]).

1.1. Results

We develop a novel and powerful method for obtaining lower bounds for randomized
communication complexity. We use this method to derive lower bounds for communication
complexity problems arising in the data stream context.
(1) In the multi-party set-disjointness problem disjn;t; there are t players and each player is given

a subset of ½n� with the following promise: either the sets are pairwise disjoint (No instances) or
they have a unique common element but are otherwise disjoint (Yes instances). We show that the

randomized communication complexity of this problem is Oðn=t2Þ: Previously, Alon et al.

[AMS99] had proved an Oðn=t4Þ bound, extending the OðnÞ bound for two-party set-disjointness
[KS92,Raz92]. The best upper bound for this problem in the one-way communication model is
Oðn=tÞ [CKS03]. In the one-way model (where each player sends exactly one message to the next

player) we show a nearly optimal lower bound of Oðn=t1þeÞ for arbitrarily small e:
Our lower bound result in the one-way model implies the following: we obtain the first super-

logarithmic (in fact, nOð1Þ) space lower bounds for approximating the kth frequency moment Fk
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for any real k42 in the data stream model.2 This resolves the conjecture of Alon et al. [AMS99],

who showed an Oðn1�5=kÞ lower bound for constant factor approximation of Fk; k45: We show

that approximating Fk; k42; to within constant factors requires Oðn1�ð2þgÞ=kÞ space, for any

constant g40: For k42; the best known space upper bound for Fk is Õðn1�1=kÞ [AMS99]. Since
our lower bound is essentially optimal for the one-way model, closing this gap would require
either a better algorithm or a different lower bound method for the frequency moment problem.
Similarly, using the lower bound in the general communication model, we show that any data

stream algorithm for approximating Fk that makes a constant number of passes requires O n1�3=k
� �

space.

(2) In the LN promise problem, Alice and Bob are given integers x; yA½0;m�n; respectively. The
promise is that either jx� yj

N
p1 (Yes instances) or jx� yj

N
Xm (No instances). We show that

the randomized communication complexity of this problem is Oðn=m2Þ: This solves the open
problem of Saks and Sun [SS02], who showed this bound for the restricted one-way model.
A consequence of this result is a lower bound for approximating Lp distances for p42:

approximating the Lp distance between n-dimensional vectors to within a factor of ne requires

Oðn1�4e�2=pÞ space in the data stream model for any constant number of passes over the input.
This bound is optimal for p ¼ N: The communication complexity lower bound of [SS02] gives a
similar bound for the one-pass data stream model.

1.2. Methodology

Our method proceeds by first decomposing the original function into simpler ‘‘primitive’’
functions, together with an appropriate ‘‘composer’’ function. For example, the two-party set-
disjointness function can be written in terms of n two-bit and functions, one for each coordinate.
By computing each and function separately, we trivially obtain a protocol to compute
disjointness. The direct sum question for communication protocols [KRW95] asks whether there
is a protocol with considerably less communication. We consider a related question, namely, the
direct sum property for the information content of the transcripts of the protocol. We formalize
this idea through the notion of information cost of a communication protocol, which measures the
amount of information revealed by the transcript about the inputs. The information complexity of
a function is the minimum information cost incurred by any protocol that computes the function;
this measure is a lower bound on the communication complexity of a function. This concept was
recently introduced by Chakrabarti et al. [CSWY01] in the context of simultaneous messages
communication complexity; it is also implicit in the works of Ablayev [Abl96] and Saks and Sun
[SS02] (see also [BCKO93]). We give an appropriate generalization of information complexity for
general communication models; the highlight of our generalization is that it admits a direct sum
theorem. Thus, any correct protocol for disjointness must reveal in its transcript enough
information to compute each of the constituent and functions. This reduces our task to proving
lower bounds for the and function.
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2For a finite sequence a ¼ a1; a2;y; where each element belongs to ½n�; and for jA½n�; let fjðaÞ denote the number of

times j occurs in a: The kth frequency moment FkðaÞ is defined as
P

jA½n� f k
j ðaÞ:
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In carrying out an information complexity lower bound, we would like to create an input
distribution that is intuitively hard for any communication protocol. It turns out that for many
natural examples, these distributions necessarily have a non-product structure. This is one of the
main obstacles to extending the direct sum methodology of [CSWY01] to general communication
protocols; their work addresses the more restrictive case of simultaneous message protocols. In
the proof technique of [SS02], the issue of such non-product distributions causes significant
complications; they resolve this difficulty for the one-way model by using tools from information
theory and Fourier analysis. We approach this problem by expressing the non-product distribution
as a convex combination of product distributions; this approach has been previously considered for
other problems such as the distributional complexity of set-disjointness [Raz92] and the parallel
repetition theorem [Raz98]. The novelty of our method lies in extending the definition of
information complexity to allow conditioning so that it admits a direct sum decomposition.
The direct sum theorem reduces our task to proving information complexity lower bounds for

primitive (single coordinate) functions. Existing methods for communication complexity seem
unsuitable for this task, since randomized protocols can use many bits of communication but
reveal little information about their inputs. Our solution is based on considering probability
distributions induced on transcripts, and relating these distributions via several statistical distance
measures. In particular, the Hellinger distance [LY90], extensively studied in statistical decision
theory, plays a crucial role in the proofs. We derive new properties of the Hellinger distance
between distributions arising in communication complexity. In particular, we show that it satisfies
a ‘‘cut-and-paste’’ property and an appropriate Pythagorean inequality; these are crucial to the
proofs of the one-coordinate lower bounds.
Our result for the multi-party set-disjointness in the general communication complexity model

is not tight. This is due to a limitation in our proof technique and can be attributed to the fact that
the square of the Hellinger distance satisfies only a weak form of triangle inequality. This leads us
to consider generalizations of the Hellinger distance, which, combined with the Markovian
structure of one-way protocols, allows us to derive near-triangle inequalities. To the best of our
knowledge, this is the first proof technique for multi-party one-way protocols—a model
particularly relevant to data stream computations.

Related developments. By using the direct sum paradigm of this work, together with sharper
analytical methods to obtain information complexity lower bounds for ‘‘primitive’’ functions,
Chakrabarti et al. [CKS03] have obtained essentially optimal bounds for the communication
complexity of the multi-party set-disjointness problem in the general and one-way communication
models. Jayram (unpublished work, 2003) has shown that the information complexity
methodology of this work yields lower bounds for distributional communication complexity as
well. Jayram et al. [JKS03] have extended the methods of this paper to obtain new separations
between non-deterministic/co-non-deterministic communication complexity and two-sided error
randomized communication complexity. Jain et al. [JRS03] have used the direct sum methodology
to obtain quantum communication complexity lower bounds for set-disjointness.

Organization. Section 2 contains the preliminaries. In Section 3, we derive the lower bounds for
data stream algorithms by applying the communication complexity lower bounds. In Section 4,
we introduce the notions of information complexity and conditional information complexity. In
Section 5, we present the direct sum theorem for conditional information complexity, and
illustrate it via the set-disjointness problem in the two-party (general) communication complexity
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model. In Section 6, we describe the connection between communication complexity and
‘‘information statistics,’’ a term that we coin to loosely describe the interplay between information
theory and distances between probability distributions. As an illustration of our techniques, we prove
an Oð1Þ lower bound on the information complexity of the and of two bits. Section 7 deals with the
multi-party set-disjointness problem, and presents lower bounds in the general and one-way
communication models. Section 8 contains the communication lower bound for the LN promise
problem. Appendices A and B contain results about various statistical notions of divergences between
probability distributions that we use in the paper, including some technical lemmas that we prove.

2. Preliminaries

Communication complexity. In the two-party randomized communication complexity model
[Yao79] two computationally all-powerful probabilistic players, Alice and Bob, are required to
jointly compute a function f :X
Y-Z: Alice is given xAX; Bob is given yAY; and they
exchange messages according to a shared protocol P: For a fixed input pair ðx; yÞ; the random
variable Pðx; yÞ denotes the message transcript obtained when Alice and Bob follow the protocol
P on inputs x and y (the probability is over the coins of Alice and Bob). A protocol P is called a
d-error protocol for f ; if there exists a function Pout such that for all input pairs ðx; yÞ;
Pr½PoutðPðx; yÞÞ ¼ f ðx; yÞ�X1� d: The communication cost of P; denoted by jPj; is the maximum
length ofPðx; yÞ over all x; y; and over all random choices of Alice and Bob. The d-error randomized
communication complexity of f ; denoted Rdð f Þ; is the cost of the best d-error protocol for f :
Communication complexity can also deal with functions over a partial domain: f :L-Z;

LDX
Y: In this case, we will assume that any protocol for f is well-defined for any input pair
ðx; yÞ; even if this pair does not belong to the domain L: (This can be achieved by letting the
players transmit the special symbol ‘�’ and halt the protocol whenever they cannot continue
executing the protocol.) Also, without loss of generality, we will assume that the protocol always
produces transcripts of the same length.
The model can be easily generalized to handle an arbitrary number of players t; who compute a

function f :X1 
?
Xt-Z: Here, the ith player is given xiAXi; and the players exchange
messages according to some fixed protocol. A restricted model of communication is the one-way

communication model [PS84,Abl96,KNR99], in which the ith player sends exactly one message
throughout the protocol to the ði þ 1Þst player (we define t þ 1 ¼ 1). We denote the d-error one-

way communication complexity of f by R
1-way
d ð f Þ:

All our lower bounds will be proved in the following stronger model: all messages are written on
a shared ‘‘blackboard,’’ which is visible to all the players. In the one-way model, this is
tantamount to saying that the players write their messages in turn, from player 1 to player t; where
each message could depend on all previous messages written.

Notation. Throughout the paper we denote random variables in upper case, and vectors in
boldface. For a random variable X and a distribution n; we use XBn to denote that X is
distributed according to n: Let XBm be a vector random variable. We say that m is a product

distribution if the components of X are mutually independent of each other. For example, the
distribution m ¼ nn obtained by taking n independent copies of n is a product distribution. For a
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random variable FðzÞ on a set O; we write Fz to denote the distribution of FðzÞ; i.e., FzðoÞ ¼
Pr½FðzÞ ¼ o�; for every oAO: We denote by ½n� the set f1;y; ng; and by ½0;m� the set f0;y;mg:
All logarithms are to the base 2.

Information theory. Let m be a distribution on a finite set O and let XBm: The entropy of X is
defined by

HðXÞ ¼
X
oAO

mðoÞ log 1

mðoÞ:

The conditional entropy of X given Y is

HðX j YÞ ¼
X

y

HðX j Y ¼ yÞ Pr½Y ¼ y�;

where HðX j Y ¼ yÞ is the entropy of the conditional distribution of X given the event fY ¼ yg:
The joint entropy of two random variables X and Y is the entropy of their joint distribution and is
denoted HðX ;YÞ:
The mutual information between X and Y is IðX ;YÞ ¼ HðXÞ �HðX j YÞ ¼ HðYÞ �HðY j XÞ:

The conditional mutual information between X and Y conditioned on Z is IðX ;Y j ZÞ ¼
HðX j ZÞ �HðX j Y ;ZÞ: Equivalently, it can be defined as

IðX ;Y j ZÞ ¼
X

z

IðX ;Y j Z ¼ zÞ Pr½Z ¼ z�;

where IðX ;Y j Z ¼ zÞ is the mutual information between the conditional distributions of X and Y
given the event fZ ¼ zg:
We use several basic properties of entropy and mutual information in the paper, which we

summarize below (proofs can be found in Chapter 2 of [CT91]).

Proposition 2.1 (Basic properties of entropy). Let X ;Y be random variables.

1. If X takes on at most s values, then 0pHðXÞplog s:
2. IðX ;YÞX0:
3. Subadditivity: HðX ;YÞpHðXÞ þHðYÞ; equality if and only if X and Y are independent.

4. Subadditivity of conditional entropy: HðX ;Y j ZÞpHðX j ZÞ þHðY j ZÞ; equality if and only if
X and Y are independent conditioned on Z.

5. Data processing inequality: if random variables X and Z are conditionally independent given Y,
then IðX ;Y j ZÞpIðX ;YÞ:

3. Data stream lower bounds

3.1. Frequency moments

Given a finite sequence of integers a ¼ a1; a2;yA½n�; the frequency of jA½n� is fj ¼ jfi j ai ¼ jgj:
For k40; the kth frequency moment FkðaÞ is defined as

Pn
j¼1 f k

j :
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For k ¼ 2; Alon et al. [AMS99] presented a data stream algorithm that estimates F2 to within a
multiplicative error of 17e using space which is logarithmic in n and polynomial in 1=e: For k42

their algorithms use space Õðn1�1=kÞ (and polynomial in 1=e). They also showed that

approximating Fk to within constant factors requires space Oðn1�5=kÞ in the data stream model.
This implies that for k45; approximating Fk requires polynomial space.

We show that approximating Fk requires space Oðn1�ð2þgÞ=kÞ for arbitrarily small g40: This
shows that for any k42; approximating Fk requires polynomial space, affirming a conjecture of
Alon et al. In order to prove the space lower bound we will adapt the reduction of [AMS99] to our
case.

Theorem 3.1. For any k42 and g40; any (one-pass) data stream algorithm that approximates Fk to

within a constant factor with probability at least 3=4 requires Oðn1�ð2þgÞ=kÞ space. For the same

problem, any data stream algorithm that makes a constant number of passes requires Oðn1�3=kÞ
space.

Proof. Let A be an s-space data stream algorithm that approximates Fk to within 17e
multiplicative error with confidence 1� d; where 0odo1=4:We useA to construct a d-error one-
way protocol for disjn;t; where t ¼ ðð1þ 3eÞnÞ1=k:
Recall that the inputs of disjn;t are t subsets S1;y;StD½n� with the following promise:

No instances: for iaj; Si-Sj ¼ |;
Yes instances: there exists xA½n� such that for all iaj; Si-Sj ¼ fxg:
The sets translate into a data stream in the following way: first all the elements of S1; then all

the elements of S2; and so forth.
The protocol for disjn;t simulates the algorithm A as follows: the first player starts the

execution by runningA on the elements of S1:WhenA has finished processing all elements of S1;
she transmits the content of the memory of A (OðsÞ bits) to the second player. The second player
resumes the execution of A on her part of the stream (the elements of S2) and sends the memory
of A to the third player. At the end of the execution, Player t obtains B; the output of A: If
Bpð1þ eÞn; then Player t sends to Player t þ 1 the bit ‘‘0’’ (meaning the sets are disjoint) and
otherwise, she sends the bit ‘‘1’’ (meaning the sets intersect).
Clearly, the protocol is one-way. We next prove that the bit Player t sends to Player t þ 1 is

indeed disjn;t with probability at least 1� d: If the input sets are disjoint, then each element has a

frequency of at most one in the stream, and therefore Fk is at most n: On the other hand, if the sets
are uniquely intersecting, then there is at least one element whose frequency is t; and therefore Fk

is at least tk ¼ ð1þ 3eÞn: Since A produces an answer B that, with probability at least 1� d; is in
the interval ðð1� eÞFk; ð1þ eÞFkÞ; it follows that if the sets are disjoint, with probability 1� d;
Bpnð1þ eÞ; and if the sets are uniquely intersecting, then with probability 1� d; BXð1� eÞð1þ
3eÞn4ð1þ eÞn: Thus, our protocol is correct on any input with probability at least 1� d:
We next derive a lower bound on s: Note that the protocol uses Oðsðt � 1Þ þ 1Þ ¼ OðstÞ bits of

communication. By Theorem 7.1, part (2), this communication is at least Oðn=t1þgÞ ¼
Oðn1�ð1þgÞ=kÞ: Therefore, s ¼ Oðn1�ð2þgÞ=kÞ:
The proof for a constant number of passes is similar. The main difference is that now we use an

c-pass s-space data stream algorithm A for Fk to construct a t-player multi-round protocol for
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disjn;t: In the end of each pass, the last player sends the content of the memory back to the first

player. Thus the total communication is at most cst: Here we use the lower bound for the general
communication complexity of disjn;t (Theorem 7.1, part (1)) to derive the data stream space lower

bound. &

3.2. Lp distances

Theorem 3.2. For any p40 (including p ¼ N) and for e such that 0oeo1
4
� 1

2p
; any data stream

algorithm that makes a constant number of passes over its input and approximates the Lp distance

between two vectors in ½0;m�n to within a factor of ne with probability at least 3=4 requires

Oðn1�4e�2=pÞ space.

Proof. Consider first the problem of approximating the LN distance between two vectors in the

communication complexity model. That is, Alice is given xA½0;m�n and Bob is given yA½0;m�n;
and they are required to find a value B s.t. ð1=neÞjjx� yjj

N
pBpnejjx� yjj

N
: Clearly, any

protocol to solve this problem is immediately a protocol to solve the LN promise problem for any

m4n2e: distinguishing between the cases jjx� yjj
N
p1 and jjx� yjj

N
¼ m: Therefore, by

Theorem 8.1, this problem requires Oðn1�4eÞ communication.
We now translate this bound to the communication complexity of approximating the Lp

distance. Using the relationship between norms, we have that

jjx� yjj
N
pjjx� yjjppn1=pjjx� yjj

N
;

or equivalently, the quantity n�1=ð2pÞjjx� yjjp approximates jjx� yjj
N

to within a (multiplicative)

factor of n1=ð2pÞ: Thus, approximating the Lp norm to within a factor of ne implies an neþ1=ð2pÞ-
approximation to LN: Using the lower bound for approximating the LN distance, we obtain an

Oðn1�4e�2=pÞ communication lower bound for approximating the Lp distance to within a factor of

ne:
Suppose there exists an s-space data stream algorithm with a constant number of passes that

approximates the Lp distance to within a factor of ne with confidence 3=4: Similar to the proof of

Theorem 3.1, this yields a communication complexity protocol that approximates the Lp distance

with the same approximation factor and the same confidence, and whose communication cost is

OðsÞ: Thus, s ¼ Oðn1�4e�2=pÞ: &

4. Information complexity

In this section we define the fundamental notions of information measures associated with
communication protocols alluded to in the introduction. As the main illustration of our
definitions and techniques, we consider the two-party set-disjointness problem. We will continue
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the illustration in Sections 5 and 6, resulting in a simple proof of the OðnÞ lower bound for the set-
disjointness problem.
Our lower bound method is built on an information-theoretic measure of communication

complexity, called information complexity, defined with respect to a given distribution over the
inputs to the function; our definitions generalize similar notions that were considered previously
[CSWY01,BCKO93,Abl96,SS02]. The discussion that follows is in the framework of two-party
communication complexity; the generalization to an arbitrary number of players is straightfor-
ward.
Fix a set KDXn 
Yn of legal inputs and a function f :K-f0; 1g:

In the set-disjointness problem, Alice and Bob hold, respectively, the characteristic vectors x

and y of two subsets of ½n�: disjðx; yÞ is defined to be 1 if and only if x-ya|:

Informally, information cost is the amount of information one can learn about the inputs from
the transcript of messages in a protocol on these inputs. Formally it is defined as follows:

Definition 4.1 (Information cost of a protocol). Let P be a randomized protocol whose inputs
belong toK: Let m be a distribution onK; and suppose ðX;YÞBm: The information cost of P with

respect to m is defined as IðX;Y;PðX;YÞÞ:

Definition 4.2 (Information complexity of a function). The d-error information complexity of f
with respect to a distribution m; denoted ICm;dð f Þ; is defined as the minimum information cost of

a d-error protocol for f with respect to m:

Proposition 4.3. For any distribution m and error d40; Rdð f ÞXICm;dð f Þ:

Proof. Let P denote the best d-error protocol for f in terms of communication. Let ðX;YÞBm: If
jPj denotes the length of the longest transcript produced by the protocol P (on any input), then
we have:

Rdð f Þ ¼ jPjXHðPðX;YÞÞXIðX;Y;PðX;YÞÞXICm;dð f Þ: &

Suppose LDX
Y; and suppose f :Ln-f0; 1g can be expressed in terms of a simpler
‘‘primitive’’ h :L-f0; 1g applied to each coordinate of the input pair ðx; yÞ: (This notion will be
formalized later; as an example, note that disjðx; yÞ ¼

W
iA½n� ðxi4yiÞ; where the primitive h is the

and of two bits.) If f depends symmetrically on the primitive in each coordinate, then we expect
that any protocol for f must implicitly solve each instance of the primitive h: Further, if the
distribution m on Ln is the product of independent copies of a distribution n on L; then one can
hope to show that ICm;dð f ÞXn  ICn;dðhÞ—a direct sum property for information complexity.

The main technical obstacle to proving this result is that the distribution m is not necessarily a
product distribution, i.e. if ðX;YÞBm; then X and Y may not be independent. This is because n
need not be a product distribution on X
Y (although m is the product of n copies of n). In fact,
for set-disjointness, it becomes essential to consider non-product distributions to obtain an OðnÞ
lower bound [BFS86]. To handle this, we proceed as follows. Let T denote an auxiliary random
variable with domainT; and let Z denote the joint distribution of ððX;YÞ;TÞ: The choice of T will
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be made such that conditioned on T ; X and Y are independent. In this case, we say that Z is a
mixture of product distributions.
In the above discussion, suppose n is non-product and m ¼ nn: Let ðX ;YÞBn: We will define a

random variable D such that X and Y are independent, conditioned on D: Let z denote the joint
distribution of ððX ;YÞ;DÞ: It is clear that Z ¼ zn is a mixture of product distributions, whose
marginal distribution on Ln is nn ¼ m: A useful consequence is that if ððX;YÞ;DÞBZ; then the
coordinates fðXj;YjÞgjA½n� are mutually independent of each other, and this continues to hold even

when conditioned on D:

For set-disjointness, we will use the non-product distribution n on the inputs given by
nð0; 0Þ ¼ 1=2; nð0; 1Þ ¼ nð1; 0Þ ¼ 1=4: Let D denote a random variable with uniform
distribution on fa; bg: If D ¼ a; then let X ¼ 0 and let Y be a uniform element of f0; 1g;
if D ¼ b; then let Y ¼ 0 and let X be a uniform element of f0; 1g: It is clear that conditioned
on D; X and Y are independent, and ðX ;YÞBn: Therefore, the joint distribution z of
ððX ;YÞ;DÞ is a mixture of product distributions.

Definition 4.4 (Conditional information cost). Let P be a randomized protocol whose inputs
belong to KDXn 
Yn: Suppose ððX;YÞ;TÞBZ; and that Z is a mixture of product distributions
on K
T: The conditional information cost of P with respect to Z is defined as
IðX;Y;PðX;YÞ j TÞ:

Definition 4.5 (Conditional information complexity). The d-error conditional information com-

plexity of f with respect to Z; denoted by CICZ;dð f Þ; is defined as the minimum conditional

information cost of a d-error protocol for f with respect to Z:

Proposition 4.6. Let m be a distribution on K; the set of inputs to f. If Z is a mixture of product
distributions on K
T such that the marginal distribution on K is m; then ICm;dð f ÞXCICZ;dð f Þ:

Proof. LetP be a protocol whose information cost equals ICm;dð f Þ: Let ððX;YÞ;TÞBZ:Note that

ðX;YÞBm: Since PðX;YÞ is conditionally independent of T given X;Y (because the private
coins of P are independent of T), the data processing inequality implies:
ICm;dð f Þ ¼ IðX;Y;PðX;YÞÞXIðX;Y;PðX;YÞ j TÞXCICZ;dð f Þ: &

Corollary 4.7 (of Propositions 4.3 and 4.6). Let f :K-f0; 1g; and let Z be a mixture of product
distributions on K
T for some set T: Then Rdð f ÞXCICZ;dð f Þ:

Remarks. In general, the choice of the random variable T in expressing Z as a mixture of product
distributions is not unique. We will choose one where the entropy of T is not too large. By a more
precise application of the data processing inequality, it can also be seen that the difference
between ICm;dð f Þ and CICZ;dð f Þ is at most HðTÞ; thus the degradation in the lower bound is not

much as long as T has small entropy.

ARTICLE IN PRESS

Z. Bar-Yossef et al. / Journal of Computer and System Sciences 68 (2004) 702–732 711



5. A direct sum theorem for conditional information complexity

We now turn to the development of the direct sum theorem for the conditional information
complexity of decomposable functions. Let P be a d-error protocol for f :Ln-f0; 1g; for some
LDX
Y: Let z be a mixture of product distributions on L
D; let Z ¼ zn; and suppose
ððX;YÞ;DÞBZ: First, we show that the conditional information cost of the protocol P with
respect to Z can be decomposed into information about each of the coordinates. This reduces our
task to proving lower bounds for the coordinate-wise information-theoretic quantities. Next, we
formalize the notion of decomposing a function into primitive functions. By imposing a further
restriction on the input distribution, we then show that each coordinate-wise information quantity
itself is lower bounded by the conditional information complexity of the primitive function. This
will result in the direct sum theorem.

Lemma 5.1 (Information cost decomposition lemma). Let P be a protocol whose inputs belong to
Ln; for some LDX
Y: Let z be a mixture of product distributions on L
D; let Z ¼ zn; and
suppose ððX;YÞ;DÞBZ: Then, IðX;Y;PðX;YÞ jDÞX

P
j IðXj;Yj;PðX;YÞ jDÞ:

Proof. Abbreviating PðX;YÞ by P; note that by definition, IðX;Y;P jDÞ ¼ HðX;Y jDÞ �
HðX;Y jP;DÞ: Now, observe that HðX;Y jDÞ ¼

P
j HðXj;Yj jDÞ; since the pairs ðXj;YjÞ; jA½n�;

are independent of each other conditioned on D: By the subadditivity of conditional entropy,
HðX;Y jP;DÞp

P
j HðXj;Yj jP;DÞ: Thus IðX;Y;P jDÞX

P
j IðXj;Yj;P jDÞ: &

Definition 5.2 (Decomposable functions). f :Ln-f0; 1g is g-decomposable with primitive h if it
can be written as f ðx; yÞ ¼ gðhðx1; y1Þ;y; hðxn; ynÞÞ; for some functions h :L-f0; 1g and

g : f0; 1gn-f0; 1g: Sometimes we simply write f is decomposable with primitive h:

It is easy to see that set-disjointness is or-decomposable with primitive and: disjðx; yÞ ¼W
iA½n�ðxi4yiÞ: Here L ¼ f0; 1g2; h ¼ and; g ¼ or:

Other examples of decomposable functions are the following.

(1) Inner product: Again L ¼ f0; 1g2 and h is the and of two bits; g is the xor of n bits.
(2) LN promise problem: Here L ¼ ½0;m�2; for some m; hðx; yÞ ¼ 1 if j x � y jXm and 0 if

j x � y jp1; g is the or of n bits.

Now, we would like to lower bound the information about each coordinate by the conditional
information complexity of h; that is, IðXj;Yj;P jDÞXCICz;dðhÞ; for each j: We achieve this by

presenting, for each j; a family of protocols for h that use a protocol P for f as a subroutine, and
whose average conditional information cost with respect to z is exactly IðXj;Yj;P jDÞ: To

facilitate this, we will further restrict the input distribution that we use to be a ‘‘collapsing
distribution’’ for f :
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Definition 5.3 (Embedding). For a vector wALn; jA½n�; and uAL; we define embedðw; j; uÞ to be
the n-dimensional vector over L; whose ith component, 1pipn; is defined as follows:
embedðw; j; uÞ½i� ¼ wi if iaj; and embedðw; j; uÞ½ j� ¼ u: (In other words, we replace the jth
component of w by u; and leave the rest intact.)

Definition 5.4 (Collapsing distribution). Suppose f :Ln-f0; 1g is g-decomposable with primi-
tive h :L-f0; 1g: We call ðx; yÞALn a collapsing input for f ; if for every jA½n�ðu; vÞALn;
f ðembedðx; j; uÞ; embedðy; j; vÞÞ ¼ hðu; vÞ: We call a distribution m on Ln collapsing for f ; if every
ðx; yÞ in the support of m is a collapsing input.

Since our distribution n for set-disjointness never places any mass on the pair ð1; 1Þ; it
follows that for every ðx; yÞ in the support of m ¼ nn; and for every jA½n�;

W
iajðxi4yiÞ ¼ 0:

Therefore, for every ðu; vÞAf0; 1g2; disjðembedðx; j; uÞ; embedðy; j; vÞÞ ¼ u4v; implying that m
is a collapsing distribution for disj:

Informally, a collapsing input ðx; yÞ projects f to h in each coordinate. By fixing one such ðx; yÞ;
any protocol P for f can be used to derive n different protocols for h: the jth protocol is obtained
by simply running P on ðembedðx; j; uÞ; embedðy; j; vÞÞ; where ðu; vÞ is the input to the protocol.
Clearly, each of these protocols has the same error as P: A collapsing distribution allows us to
argue that P is in fact the ‘‘sum’’ of n protocols for h:

Lemma 5.5 (Reduction lemma). Let P be a d-error protocol for a decomposable function
f :Ln-f0; 1g with primitive h: Let z be a mixture of product distributions on L
D; let Z ¼ zn;
and suppose ððX;YÞ;DÞBZ: If the distribution of ðX;YÞ is a collapsing distribution for f ; then for all

jA½n�; IðXj;Yj;PðX;YÞ jDÞXCICz;dðhÞ:

Proof. Let D�j stand for D1;D2;y;Dj�1;Djþ1;y;Dn: Since D ¼ ðDj;D�jÞ; we have

IðXj;Yj;PðX;YÞ jDÞ ¼ Ed½IðXj;Yj;PðX;YÞ jDj;D�j ¼ dÞ�; where d is indexed by ½n�\f jg: We

will show that each term is the conditional information cost with respect to z of a d-error protocol
Pj;d for h; which will prove the lemma.

Notation. If ððX ;YÞ;DÞBz; then let n denote the distribution of ðX ;YÞ; and for dAD; let nd

denote the distribution of ðX ;YÞ; conditioned on the event fD ¼ dg: Note that nd is a product
distribution. Also, note that nn is the distribution of ðX;YÞ; and it is a collapsing distribution for f :

The protocol Pj;d has j and d ‘‘hardwired’’ into it. Suppose ðu; vÞ is the input to Pj;d: In this

protocol, Alice and Bob will simulate Pðx0; y0Þ; where x0 and y0 are values, respectively, of random
variables X0 ¼ X0ðu; j; dÞ and Y0 ¼ Y0ðv; j; dÞ; defined as follows. The jth coordinates of X0 and Y0

will be constants, defined by X0
j ¼ u and Y0

j ¼ v; and for iaj; ðX0
i;Y

0
iÞBndi

: Note that since ndi
is a

product distribution, Alice can produce x0i and Bob can produce y0i independently of each other

using private coin tosses. Now, Alice and Bob simulate Pðx0; y0Þ and output whatever it outputs.
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Define x and y as follows. For iaj; xi ¼ x0i and yi ¼ y0i; and ðxj; yjÞ is some value in the support

of n: Since ðxi; yiÞ; for iaj; are also values in the support of n; it follows that ðx; yÞ is in the support
of nn; which is a collapsing distribution for f : This implies that ðx; yÞ is a collapsing input for f ; so
f ðx0; y0Þ ¼ f ðembedðx; j; uÞ; embedðy; j; vÞÞ ¼ hðu; vÞ: It follows that Pj;d is a d-error protocol for h:
Let ððU ;VÞ;DÞBz: The conditional information cost of Pj;d with respect to z equals

IðU ;V ;Pj;dðU ;VÞ j DÞ: We will show that the joint distribution of ðU ;V ;D;Pj;dðU ;VÞÞ is

identical to that of ðXj;Yj;Dj;PðX;YÞÞ conditioned on the event fD�j ¼ dg: This will imply the

following, which completes the proof.

IðU ;V ;Pj;dðU ;VÞ j DÞ ¼ IðXj;Yj;PðX;YÞ jDj;D�j ¼ dÞ:
It is easy to see that for any values u; v; and d;

Pr½U ¼ u;V ¼ v;D ¼ d�
¼ Pr½Xj ¼ u;Yj ¼ v;Dj ¼ d�
¼ Pr½Xj ¼ u;Yj ¼ v;Dj ¼ d jD�j ¼ d�
ðby independence of Xj;Yj; and Dj from D�jÞ:

Furthermore, for any transcript t;

Pr½Pj;dðU ;VÞ ¼ t j U ¼ u;V ¼ v;D ¼ d�
¼ Pr½Pj;dðu; vÞ ¼ t j U ¼ u;V ¼ v;D ¼ d�
¼ Pr½Pj;dðu; vÞ ¼ t� ðby independence of Pj;dðu; vÞ from ðU ;V ;DÞÞ
¼ Pr½PðX0ðu; j; dÞ;Y0ðv; j; dÞÞ ¼ t�:

Notice that the distribution of ðX0ðu; j; dÞ;Y0ðv; j; dÞÞ is identical to the distribution of ðX;YÞ
conditioned on the event fXj ¼ u;Yj ¼ v;D�j ¼ dg: Therefore, we have

Pr½Pj;dðU ;VÞ ¼ t j U ¼ u;V ¼ v;D ¼ d�
¼ Pr½PðX;YÞ ¼ t jXj ¼ u;Yj ¼ v;D�j ¼ d�
¼ Pr½PðX;YÞ ¼ t jXj ¼ u;Yj ¼ v;Dj ¼ d;D�j ¼ d�:

The last equality uses the independence of PðX;YÞ from Dj; conditioned on the events fXj ¼ ug
and fYj ¼ vg: &

Theorem 5.6 (Direct sum theorem). Let f :Ln-f0; 1g be a decomposable function with
primitive h: Let z be a mixture of product distributions on L
D; let Z ¼ zn; and suppose

ððX;YÞ;DÞBZ: If the distribution of ðX;YÞ is a collapsing distribution for f ; then
CICZ;dð f ÞXn  CICz;dðhÞ:

Proof. Let P be the optimal d-error protocol for f in terms of conditional information cost with
respect to Z: If ððX;YÞ;DÞBZ; then we have CICZ;dð f Þ ¼ IðX;Y;PðX;YÞ jDÞ: By the information

cost decomposition lemma (Lemma 5.1), this is at least
P

j IðXj;Yj;PðX;YÞ jDÞ: By the reduction
lemma (Lemma 5.5), this is at least n  CICz;dðhÞ: &

ARTICLE IN PRESS

Z. Bar-Yossef et al. / Journal of Computer and System Sciences 68 (2004) 702–732714



Corollary 5.7 (of Corollary 4.7, and Theorem 5.6). With the notation and assumptions of Theorem

5.6, Rdð f ÞXCICZ;dð f ÞXn  CICz;dðhÞ:

For set-disjointness, RdðdisjÞXn  ICz;dðandÞ: Thus it suffices to show an Oð1Þ lower

bound for the conditional information complexity of the 1-bit function and with respect
to z:

6. Information complexity lower bound for primitives

The direct sum theorem of the foregoing section effectively recasts the task of proving
randomized communication complexity lower bounds for many functions. Namely, the goal now
is to prove conditional information complexity lower bounds for ‘‘primitive functions’’, where the
communicating parties are given inputs from a small domain, and wish to check a fairly simple
predicate. In this section, we illustrate how we accomplish this by proving an Oð1Þ lower bound
for the conditional information complexity of the and function with respect to the distribution z:
In doing so, we develop some basic connections between communication complexity, statistical
distance measures, and information theory; these connections will be later used in the proofs of
our main results on multi-party set-disjointness and the LN problem. To aid the exposition, we
state and use various Lemmas and Propositions; their proofs are collected in Section 6.1 and
Appendix A.
We will show that for any randomized protocol P that correctly computes the and function, an

Oð1Þ lower bound holds on IðU ;V ;PðU ;VÞ j DÞ; where ððU ;VÞ;DÞBz: Recall that we have

Pr½D ¼ 0� ¼ Pr½D ¼ 1� ¼ 1=2: We assume that for every input ðu; vÞAf0; 1g2; the protocol P
computes andðu; vÞ correctly with probability at least 1� d:
Let Z denote a random variable distributed uniformly in f0; 1g: Using the definition of the

distribution z and expanding on values of D; we have

IðU ;V ;PðU ;VÞ j DÞ ¼ 1
2
½IðU ;V ;PðU ;VÞ j D ¼ 0Þ þ IðU ;V ;PðU ;VÞ j D ¼ 1Þ�

¼ 1
2
½IðZ;Pð0;ZÞÞ þ IðZ;PðZ; 0ÞÞ� ð1Þ

In the last equality, we use the following facts. Conditioned on the event fD ¼ 0g; U is identically
0; and V is distributed uniformly in f0; 1g; similarly, conditioned on the event fD ¼ 1g; V is
identically 0; and U is distributed uniformly in f0; 1g:
Notice that the mutual information quantities in (1) are of the form IðZ;FðZÞÞ; where Z is

uniformly distributed in f0; 1g; and FðzÞ is a random variable, for each zAf0; 1g: The next lemma
provides an important passage from such quantities (and hence from information complexity) to
metrics on probability distributions. The advantage of working with a metric is that it allows us
the use of the triangle inequality when needed; furthermore, as will be evident from Lemmas 6.3
and 6.4 later, Hellinger distance turns out to be a natural choice in analyzing distributions of
transcripts of communication protocols.
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Definition 6.1 (Hellinger distance). The Hellinger distance between probability distributions P

and Q on a domain O is defined by

h2ðP;QÞ ¼ 1�
X
oAO

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðoÞQðoÞ

p
¼
X
oAO

PðoÞ þ QðoÞ
2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðoÞQðoÞ

p� 	
:

(Note: The above equation defines the square of the Hellinger distance.)

For the discussion below, recall our notation that for a random variable FðzÞ on a set O; we
write Fz to denote the distribution of FðzÞ: The following lemma is proved in Appendix A as
Lemma A.7.

Lemma 6.2. Let Fðz1Þ and Fðz2Þ be two random variables. Let Z denote a random variable with

uniform distribution in fz1; z2g: Suppose FðzÞ is independent of Z for each zAfz1; z2g: Then,

IðZ;FðZÞÞXh2ðFz1 ;Fz2Þ:

Combining (1) and Lemma 6.2, we obtain:

IðU ;V ;PðU ;VÞ j DÞX 1
2
ðh2ðP00;P01Þ þ h2ðP00;P10ÞÞ ðLemma 6:2Þ

X
1
4
ðhðP00;P01Þ þ hðP00;P10ÞÞ2 ðCauchy2SchwarzÞ

X
1
4
h2ðP01;P10Þ: ðTriangle inequalityÞ

At this point, we have shown that the conditional information cost of P with respect to z is

bounded from below by h2ðP01;P10Þ: This leads us to the task of lower bounding the Hellinger
distance between P01 and P10: Of the four distributions P00;P01;P10; and P11 on the set of possible
transcripts of P; it is natural to expect P11 to be quite different from the rest since andð1; 1Þ ¼ 1;
while the value of and on the other three input pairs is 0: Given that andð0; 1Þ and andð1; 0Þ are
both 0; it is not clear why these two distributions (on the set of possible transcripts of P) should be
far apart. This is where the ‘‘rectangular’’ nature of the transcripts of communication protocols
comes in. We will show that the transcript distributions on various inputs satisfy two important
properties, which may be considered to be analogs of the following statement about deterministic
communication protocols: if Pðx; yÞ ¼ t ¼ Pðx0; y0Þ; then Pðx0; yÞ ¼ t ¼ Pðx; y0Þ:

Lemma 6.3 (Cut-and-paste lemma). For any randomized protocol P and for any x; x0AX and
y; y0AY; hðPxy;Px0y0 Þ ¼ hðPxy0 ;Px0yÞ:

Lemma 6.4 (Pythagorean lemma). For any randomized protocol P and for any x;x0AX and

y; y0AY; h2ðPxy;Px0yÞ þ h2ðPxy0 ;Px0y0 Þp2h2ðPxy;Px0y0 Þ:

Note: Lemma 6.4 is not used in the lower bound for and; it is used only in Section 8.

Lemma 6.3 implies that h2ðP01;P10Þ ¼ h2ðP00;P11Þ; so we have:

IðU ;V ;PðU ;VÞ j DÞX 1
4
h2ðP01;P10Þ

¼ 1
4
h2ðP00;P11Þ: ðLemma 6:3Þ
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The final point is that since andð0; 0Þaandð1; 1Þ; we expect the distributions P00 and P11 to be
far from each other.

Lemma 6.5. For any d-error protocol P for a function f ; and for any two input pairs ðx; yÞ and

ðx0; y0Þ for which f ðx; yÞaf ðx0; y0Þ; h2ðPxy;Px0y0 ÞX1� 2
ffiffiffi
d

p
:

We now have:

CICz;dðandÞX IðU ;V ;PðU ;VÞ j DÞ
X

1
4 h

2ðP00;P11Þ

X
1
4
1� 2

ffiffiffi
d

p
 �
: ðLemma 6:5Þ

To sum up, we have shown:

Theorem 6.6. RdðdisjÞXn  CICz;dðandÞXn
4
1� 2

ffiffiffi
d

p
 �
:

6.1. Statistical structure of randomized communication protocols

We begin with a lemma that formulates the rectangular structure of the distributions on the
transcripts of a randomized communication protocol. This is a probabilistic analog of the
fundamental lemma of communication complexity—the set of inputs that have the same
transcript in a deterministic communication protocol is a combinatorial rectangle.

Lemma 6.7. (1) Let P be a two-player randomized communication protocol with input set LDX

Y; let T denote the set of possible transcripts of P: There exist mappings q1 :T
X-R; q2 :T

Y-R such that for every xAX; yAY; and for every transcript tAT;

Pr½Pðx; yÞ ¼ t� ¼ q1ðt;xÞ  q2ðt; yÞ:

(2) Let P be a t-player randomized communication protocol with input set LDX ¼ X1 
?

Xt; let T denote the set of possible transcripts of P: Let A;B be a partition of the set of players into
two nonempty sets; denote by XA and XB the projections of X to the coordinates in A and in B;
respectively. Then, there exist mappings qA :T
XA-R; qB :T
XB-R; such that for every

yAXA; zAXB; and for every transcript tAT;

Pr½Pðy; zÞ ¼ t� ¼ qAðt; yÞ  qBðt; zÞ:

Proof. We first prove part (1). Recall that by our convention, P is well-defined for every pair
ðx; yÞAX
Y; regardless of whether it is a legal input (i.e., belongs to LDX
Y) or not.
In the proof we use the following ‘‘rectangle’’ property of deterministic communication

complexity protocols (cf. [KN97], Chapter 1): for any possible transcript t of a deterministic
communication protocol with input sets X and Y; the set of pairs on which the protocol’s

ARTICLE IN PRESS

Z. Bar-Yossef et al. / Journal of Computer and System Sciences 68 (2004) 702–732 717



transcript equals t is a combinatorial rectangle; that is, a set of the form A
B where ADX and
BDY:
In order to apply this property to randomized protocols, we note that a randomized protocol

can be viewed as a deterministic protocol if we augment the inputs of Alice and Bob with their
private random strings. If a and b denote, respectively, the private coin tosses of Alice and Bob,
under this view, the (‘‘extended’’) input of Alice is ðx; aÞ and that of Bob is ðy; bÞ:
For tAT; let AðtÞ 
BðtÞ be the combinatorial rectangle that corresponds to the transcript t

in the (extended, deterministic) protocol P: That is, for all ðx; aÞAAðtÞ and for all ðZ;bÞABðtÞ
(and only for such pairs), Pððx; aÞ; ðZ;bÞÞ ¼ t: For each xAX; define Aðt; xÞDAðtÞ by Aðt; xÞ ¼
fðx; aÞAAðtÞ j x ¼ xg; and defineXðxÞ to be the set of all pairs of the form ðx; aÞ: Similarly, define
Bðt; yÞ and YðyÞ for each yAY: Finally define q1ðt;xÞ ¼ jAðt;xÞj=jXðxÞj and q2ðt; yÞ ¼
jBðt; yÞj=jYðyÞj:
Note that on input x; y; Alice chooses a pair ðx; aÞ from XðxÞ uniformly at random, and Bob

chooses a pair ðy; bÞ from YðyÞ uniformly at random. For any tAT; the transcript of P would be
t if and only if ðx; aÞAAðt;xÞ and ðy; bÞABðt; yÞ: Since the choices of a and b are independent, it
follows that Pr½Pðx; yÞ ¼ t� ¼ q1ðt; xÞ  q2ðt; yÞ:
The proof for part (2) is by a straightforward reduction to part (1), obtained by letting Alice

and Bob simulate the messages sent by the players in A and B; respectively. &

We also formulate a special Markovian property for one-way protocols, which will be used in
the proof for the multi-party set-disjointness in Section 7.

Lemma 6.8 (Markov property of one-way protocols). Let P be a t-player one-way randomized
communication protocol with input set LDX ¼ X1 
?
Xt; let T denote the set of possible

transcripts of P: Let A ¼ ½1; k� and B ¼ ½k þ 1; t� ð1pkotÞ be a partition of the set of players.
Denote by XA and XB the projections of X to the coordinates in A and in B; respectively; similarly,
denote by TA and TB the projections of T to the set of messages sent by players in A and in B;
respectively. Then, for each assignment yAXA there exists a distribution py on TA and for each

assignment zAXB there exists a probability transition matrix Mz on TA 
TB; such that for every

transcript t ¼ ðtA; tBÞ; where tAATA; tBATB;

Pr½Pðy; zÞ ¼ t� ¼ pyðtAÞ  MzðtA; tBÞ:

Proof. Since P is a one-way protocol, for any transcript t ¼ ðtA; tBÞ; tA depends only on the
inputs and private coins of players in A; tB depends only on tA and the inputs and private coins of
players in B: Thus, we can write Pðy; zÞ ¼ ðPAðyÞÞ;PBðz;PAðyÞÞ; where PA and PB are the
messages sent by players in A and in B; respectively. Therefore,

Pr½Pðy; zÞ ¼ ðtA; tBÞ� ¼ Pr½PAðyÞ ¼ tA�  Pr½PBðz; tAÞ ¼ tB jPAðyÞ ¼ tA�:
Define py to be the distribution of PAðyÞ: Since the coins of players in A and players in B are

independent, it follows that PAðyÞ and PBðz; tAÞ are independent. We obtain: Pr½PBðz; tAÞ ¼
tB jPAðyÞ ¼ tA� ¼ Pr½PBðz; tAÞ ¼ tB�: Define Mz to be the matrix whose tAth row describes the
distribution of PBðz; tAÞ: The lemma follows. &
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Remark. Extending the above lemma to general protocols P; it can be shown that for all inputs
ðy; zÞ; there exist a column-stochastic matrix My and a row-stochastic matrix Mz such that

Pr½Pðy; zÞ ¼ t� ¼ MyðtA; tBÞ  MzðtA; tBÞ: This is a slightly stronger form of Lemma 6.7.

6.1.1. Proofs of Lemmas 6.3, 6.4, and 6.5

Let P denote a d-error randomized protocol for a function f on X
Y: Let x; x0AX and
y; y0AY: We first prove the cut-and-paste lemma, that is, hðPxy;Px0y0 Þ ¼ hðPxy0 ;Px0yÞ:

Proof of Lemma 6.3.

1� h2ðPxy;Px0y0 Þ
¼
X
t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pr½Pðx; yÞ ¼ t�  Pr½Pðx0; y0Þ ¼ t�

p
¼
X
t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q1ðt;xÞ  q2ðt; yÞ  q1ðt;x0Þ  q2ðt; y0Þ

p
ðLemma 6:7Þ

¼
X
t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pr½Pðx; y0Þ ¼ t�  Pr½Pðx0; yÞ ¼ t�

p
¼ 1� h2ðPxy0 ;Px0yÞ: &

Next we prove the Pythagorean lemma, that is, h2ðPxy;Px0yÞ þ h2ðPxy0 ;Px0y0 Þp2h2ðPxy;Px0y0 Þ:

Proof of Lemma 6.4. Using Lemma 6.7, we have

1

2
½ð1� h2ðPxy;Px0yÞÞ þ ð1� h2ðPxy0 ;Px0y0 ÞÞ�

¼ 1

2

X
t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q1ðt; xÞ  q2ðt; yÞ  q1ðt; x0Þ  q2ðt; yÞ

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q1ðt;xÞ  q2ðt; y0Þ  q1ðt;x0Þ  q2ðt; y0Þ

p

¼
X
t

q2ðt; yÞ þ q2ðt; y0Þ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q1ðt;xÞ  q1ðt; x0Þ

p
X

X
t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2ðt; yÞ  q2ðt; y0Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q1ðt;xÞ  q1ðt; x0Þ

p
ðAM2GM inequalityÞ

¼ 1� h2ðPxy;Px0y0 Þ: &

Finally, we prove Lemma 6.5, that is, h2ðPxy;Px0y0 ÞX1� 2
ffiffiffi
d

p
if f ðx; yÞaf ðx0; y0Þ: The proof

uses the well-known total variation distance between distributions, and its connection to the
Hellinger distance (proved in Appendix A).

Definition 6.9 (Total variation distance). The total variation distance between probability
distributions P and Q on a domain O is defined by

VðP;QÞ ¼ max
O0DO

ðPðO0Þ � QðO0ÞÞ ¼ 1

2

X
oAO

j PðoÞ � QðoÞj:
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Proposition 6.10. If P and Q are distributions on the same domain, then

VðP;QÞphðP;QÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� h2ðP;QÞ

q
:

Proof of Lemma 6.5. Let T be the set of all transcripts t on which P outputs f ðx; yÞ (i.e.,
PoutðtÞ ¼ f ðx; yÞ). Since P outputs f ðx; yÞ with probability at least 1� d on ðx; yÞ; we have
Pr½Pðx; yÞAT�X1� d; similarly, since P outputs f ðx; yÞ with probability at most d on ðx0; y0Þ; we
have Pr½Pðx0; y0ÞAT�pd: It follows that VðPxy;Px0y0 ÞX1� 2d: The lemma follows by an

application of Proposition 6.10. &

7. Multi-party set-disjointness

Let disjn;tðx1;y; xtÞ ¼
Wn

j¼1

Vt
i¼1 xi; j; where the xi’s are n-bit vectors. Thus, disjn;t is or-

decomposable, and the induced ‘‘primitive’’ functions are all andt—the t-bit and. The legal inputs
for andt are the all-zero 0; the all-one 1; and the standard unit vectors ei with 1 in the ith
position.3

Theorem 7.1. For any 0odo1=4; and any 0oeo1;

ð1Þ Rdðdisjn;tÞX
n

t2
 1� 2

ffiffiffi
d

p
 �
;

ð2Þ R
1-way
d ðdisjn;tÞX

n

t1þe 
e2  ln2 2

8
 1� 2

ffiffiffi
d

p
 �
:

Proof. We will employ the direct sum paradigm and define an input distribution for disjn;t by

defining the input distribution for andt:

We will define random variables ðU;DÞ in f0; 1gt 
 ½t�; with distribution z; as follows. The
random variable D has uniform distribution on ½t�; conditioned on the event fD ¼ ig; U is
uniformly distributed in f0; eig: If n denotes the distribution of U; it is clear that nn is a collapsing
distribution for disjn;t: Thus, all we need to prove is a lower bound on the conditional information

complexity of andt with respect to z:
Let P be any d-error protocol that computes andt; to keep the notation simple we will suppress

any reference to the private randomness used in P: The conditional information cost of P with
respect to z is now given by

IðU;PðUÞ j DÞ ¼ 1

t

X
i

IðU;PðUÞ j D ¼ iÞ: ð2Þ
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Notice that conditioned on the event fD ¼ ig; U is uniformly distributed in f0; eig; so Lemma
6.2 allows us passage to the Hellinger distance. Thus we have

IðU;PðUÞ j DÞX1

t

Xt

i¼1

h2ðP0;Pei
Þ: ð3Þ

We will provide lower bounds on the RHS of (3) in terms of h2ðP0;P1Þ: By Lemma 6.5, we

know that h2ðP0;P1ÞX1� 2
ffiffiffi
d

p
: Part (1) of the Theorem follows from Lemma 7.2, and part (2) of

the Theorem follows from Lemma 7.3. &

Lemma 7.2. Let P be a randomized t-party communication protocol with inputs from f0; 1gt: ThenPt
i¼1 h

2ðP0;Pei
ÞXð1=tÞh2ðP0;P1Þ:

Proof. The lemma is proved by a tree-induction argument. For simplicity of exposition, we
assume that t is a power of 2. Let T be a complete binary tree of height log t: We will label the
nodes of the tree as follows. The leaves are labeled 1 through t; each internal node is labeled by the
interval formed by the leaves in the sub-tree below the node. Using this labeling, we uniquely
identify the node of T labeled ½a; b� with the t-bit input e½a;b�; which is the characteristic vector of

the integer interval ½a; b�D½t�: It is easy to see that the root is identified with the input 1 and the t
leaves of the tree are identified with e1;y; et:
The inductive step is to prove the following: for any internal node u in T whose children are v

and w; h2ðP0;PuÞp2  ðh2ðP0;PvÞ þ h2ðP0;PwÞÞ:
Suppose u ¼ e½a;b�; for some a; b; so that v ¼ e½a;c�; and w ¼ e½cþ1;b�; where c ¼ Iaþb

2
m: Let A

denote the set of players ½1; c� and B denote the set of players ½c þ 1; t�: Let y be the projection of 0
on the coordinates in A and let y0 be the projection of u on the coordinates in A: Similarly, let z; z0

be the projections of 0 and u on the coordinates in B; respectively. Note that v ¼ y0z and w ¼ yz0:
The key step in the proof is an analog of the cut-and-paste lemma (Lemma 6.3), applied to t-

player protocols, implying that

hðP0;PuÞ ¼ hðPyz;Py0z0 Þ ¼ hðPyz0 ;Py0zÞ ¼ hðPw;PvÞ: ð4Þ

The correctness of Eq. (4) can be verified analogously to the proof of Lemma 6.3, using part (2) of
Lemma 6.7.
By the triangle inequality, hðPv;PwÞphðP0;PvÞ þ hðP0;PwÞ; which by the Cauchy–Schwarz

inequality is at most ð2  ðh2ðP0;PvÞ þ h2ðP0;PwÞÞÞ1=2: Substituting in Eq. (4), we obtain

h2ðP0;PuÞp2  ðh2ðP0;PvÞ þ h2ðP0;PwÞÞ: The lemma follows. &

Lemma 7.3. Let P be a randomized t-party one-way communication protocol with inputs from

f0; 1gt: Then, for any 0oeo1;Xt

i¼1

h2ðP0;Pei
ÞXðln2 2Þe2

8te
 h2ðP0;P1Þ:

The main idea in the proof of Lemma 7.3 is to exploit the Markovian structure of transcript
distributions that arise in one-way protocols, captured by Lemma 6.8. To obtain the bound in the
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lemma, we use Rényi divergences, which are generalizations of the Hellinger distance. This makes
the proof technically tedious, and therefore we defer it to Appendix B. Here we prove a weaker
version of the lemma, which still conveys the main ideas needed to obtain the stronger bound.

This weaker version yields a lower bound of ðn=t1þc0 Þ  1� 2
ffiffiffi
d

p
 �
on R

1-way
d ðdisjn;tÞ; where

c0E0:77155:

Lemma 7.4. Let P be a randomized t-party one-way communication protocol with inputs from

f0; 1gt: Then,
Pt

i¼1 h
2ðP0;Pei

ÞXð1=tc0 Þh2ðP0;P1Þ; where c0 ¼ log2 1þ 1ffiffi
2

p

 �

E0:77155:

Proof. The proof is similar to that of Lemma 7.2, where the inductive step is now the following:

for any internal node u in T whose children are v and w; h2ðP0;PuÞp 1þ 1=
ffiffiffi
2

p� �
ðh2ðP0;PvÞ þ

h2ðP0;PwÞÞ:
Suppose u ¼ e½a;b�; v ¼ e½a;c�; and w ¼ e½cþ1;b�; where c ¼ aþb

2

� �
:Define the sets of players A;B and

the input assignments y; y0; z; z0 as before. Recall that 0 ¼ yz; u ¼ y0z0; v ¼ y0z; and w ¼ yz0: A
crucial step is to rewrite P0;Pu;Pv; and Pw by applying the Markov property of one-way
protocols (Lemma 6.8).

Notation. For a probability vector p on O and a probability transition matrix M on O
 G; let
p3M denote the distribution on O
 G where ðp3MÞði; j Þ ¼ pðiÞ  Mði; j Þ:
Applying Lemma 6.8 to P0;Pu;Pv; and Pw; we have

P0 ¼ Pyz ¼ py3Mz; Pu ¼ Py0z0 ¼ py03Mz0

Pv ¼ Py0z ¼ py03Mz; Pw ¼ Pyz0 ¼ py3Mz0 ;

where py and py0 are probability vectors, and Mz and Mz0 are probability transition matrices. To

complete the proof, we will show

h2ðpy3Mz; py03Mz0 Þp 1þ 1ffiffiffi
2

p
� 	

 ðh2ðpy3Mz; py03MzÞ þ h2ðpy3Mz; py3Mz0 ÞÞ:

This follows from the lemma below, which is a general property of the Hellinger distance. &

Lemma 7.5. Let p; q be probability distributions on O; and let M;N be probability transition
matrices on O
 G; for some O and G: Then

h2ðp3M; q3NÞp 1þ 1ffiffiffi
2

p
� 	

 ðh2ðp3M; q3MÞ þ h2ðp3M; p3NÞÞ:

Proof. Let a; b be any two probability distributions on O; and C;D be any two probability
transition matrices on O
 G: Let Ci and Di denote the ith row of C and D; respectively (note that
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the rows of C and D are distributions). We have:

h2ða3C; b3DÞ ¼ 1�
X

iAO; jAG

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aiCijbiDij

p
¼ 1�

X
iAO

ffiffiffiffiffiffiffiffi
aibi

p X
jAG

ffiffiffiffiffiffiffiffiffiffiffiffi
CijDij

p
¼ 1�

X
iAO

ffiffiffiffiffiffiffiffi
aibi

p
ð1� h2ðCi;DiÞÞ ¼ h2ða; bÞ þ

X
iAO

h2ðCi;DiÞ
ffiffiffiffiffiffiffiffi
aibi

p
:

Define bi to be the squared Hellinger distance between the ith row of M and the ith row of N:
Using the above observation, we can write the three (squared) Hellinger distances as follows:

h2ðp3M; q3NÞ ¼ h2ðp; qÞ þ
P

iAO bi

ffiffiffiffiffiffiffiffi
piqi

p
; h2ðp3M; q3MÞ ¼ h2ðp; qÞ; and h2ðp3M; p3NÞ ¼P

iAO pibi:

Set g ¼ 1=
ffiffiffi
2

p
: After minor rearrangement, it suffices to prove:

X
iAO

bi

ffiffiffiffiffiffiffiffi
piqi

p � ð1þ gÞpi

� �
pgh2ðp; qÞ ¼ g

X
iAO

pi þ qi

2


 �
� ffiffiffiffiffiffiffiffi

piqi
p

 !
:

We will prove the inequality pointwise, that is, for each iAO: Since bip1 and since the ith term in
the right-hand side is always non-negative, it is enough to showffiffiffiffiffiffiffiffi

piqi
p � ð1þ gÞpipg

pi þ qi

2


 �
� ffiffiffiffiffiffiffiffi

piqi
p
 �

:

This is equivalent to showing pið1þ 3g=2Þ þ qiðg=2Þ � ð1þ gÞ ffiffiffiffiffiffiffiffi
piqi

p
X0; which is true since the

LHS is the square of the quantity
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pið1þ 3g=2Þ

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qiðg=2Þ

p� �
(recall that g ¼ 1=

ffiffiffi
2

p
). &

8. LN distance

In the LN promise problem, Alice and Bob are given, respectively, two n-dimensional vectors, x

and y from ½0;m�n with the following promise: either jxi � yijp1 for all i; or for some i; jxi �
yijXm: The function LNðx; yÞ ¼ 1 if and only if the latter case holds.

Theorem 8.1. For 0odo1=4;

RdðLNÞX n

4m2
 1� 2

ffiffiffi
d

p
 �
:

Proof. Note that LN is or-decomposable, since LNðx; yÞ ¼
W

j distðxj; yjÞ; where distðx; yÞ ¼ 1;

if jx � yjXm and distðx; yÞ ¼ 0 if jx � yjp1:
We will once again use the direct sum paradigm. Define the random variable ððX ;YÞ;DÞ with

values in ½0;m�2 
 ð½0;m� 
 f0; 1gÞ; with distribution z; as follows. The random variable D is
uniformly distributed in ð½0;m� 
 f0; 1gÞ\fð0; 1Þ; ðm; 0Þg: If D ¼ ðd; 0Þ; then X ¼ d and Y is
uniformly distributed in fd; d þ 1g; if D ¼ ðd; 1Þ; then Y ¼ d and X is uniformly distributed in
fd � 1; dg: It is easy to see that X and Y are independent, conditioned on D: Let n denote the
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distribution of ðX ;YÞ: Since distðx; yÞ ¼ 0 for all values ðx; yÞ of ðX ;YÞ; it follows nn is a
collapsing distribution for LN: The theorem follows by applying Lemma 8.2 given below. &

Lemma 8.2. For any 0odo1=4;

CICz;dðdistÞX
1

4m2
 1� 2

ffiffiffi
d

p
 �
:

Proof. Let P be any d-error protocol for dist whose conditional information cost with respect to
z is CICz;dðdistÞ; and let Ud denote a random variable with uniform distribution in fd; d þ 1g: By
expanding on values of D; it can be shown that

CICz;dðdistÞ ¼
1

2m

Xm�1

d¼0

IðUd ;Pðd;UdÞÞ þ
Xm

d¼1

IðUd�1;PðUd�1; dÞÞ
 !

:

Therefore,

CICz;dðdistÞX
1

2m

Xm�1

d¼0

h2ðPdd ;Pd;dþ1Þ þ
Xm

d¼1

h2ðPd�1;d ;PddÞ
 !

ðby Lemma 6:2Þ

X
1

4m2

Xm�1

d¼0

hðPdd ;Pd;dþ1Þ þ
Xm

d¼1

hðPd�1;d ;PddÞ
 !2

ðCauchy2SchwarzÞ

X
1

4m2
h2ðP00;PmmÞ: ðTriangle inequalityÞ:

We cannot directly bound h2ðP00;PmmÞ from below, because dist is 0 on both inputs. However,

by Lemma 6.4, we have that h2ðP00;PmmÞX1
2
ðh2ðP00;Pm0Þ þ h2ðP0m;PmmÞÞ; which, by Lemma

6.5, is at least 1� 2
ffiffiffi
d

p
: &
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Appendix A. Measures of information and statistical differences

Definition A.1 (Statistical distance measures). Let P and Q be two distributions on the same
probability space O: The total variation distance V; the Hellinger distance h; the Kullback–Leibler

divergence KL; the Jensen–Shannon divergence D; and the Rényi divergence Da ð0oao1Þ between
P and Q are defined as follows:

VðP;QÞ ¼ 1

2

X
oAO

j PðoÞ � QðoÞj ¼ max
O0DO

j PðO0Þ � QðO0Þj;
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hðP;QÞ ¼ 1�
X
oAO

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðoÞQðoÞ

p !1
2

¼ 1

2

X
oAO

ffiffiffiffiffiffiffiffiffiffiffi
PðoÞ

p
�

ffiffiffiffiffiffiffiffiffiffiffi
QðoÞ

p
 �2 !1
2

;

KLðP jj QÞ ¼
X
oAO

PðoÞ log PðoÞ
QðoÞ;

DðP;QÞ ¼ 1

2
KL P

P þ Q

2

����
����

� 	
þKL Q

P þ Q

2

����
����

� 	� 	
;

DaðP;QÞ ¼ 1�
X
oAO

PðoÞaQðoÞ1�a:

While Vð; Þ and hð; Þ are metrics, KLð jj Þ; Dð; Þ; and Dað; Þ are not. However, they are
always non-negative and equal 0 if and only if P ¼ Q: The Rényi divergence is a generalization of

the Hellinger distance: D1
2
ðP;QÞ ¼ h2ðP;QÞ:

Proposition A.2 (Proposition 6.10 restated; Le Cam and Yang [LY90]). If P and Q are

distributions on the same domain, then VðP;QÞphðP;QÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� h2ðP;QÞ

q
:

Proposition A.3.

8aob;
a
b
DbðP;QÞpDaðP;QÞp1� a

1� b
DbðP;QÞ:

Proof. We use Hölder’s inequality (for vectors u; v; and for p; q that satisfy 1=p þ 1=q ¼ 1;
j/u; vSjpjjup  jjvjjq) with p ¼ b=a and q ¼ b=ðb� aÞ:

1�DaðP;QÞ
¼
X
o

PðoÞaQðoÞ1�a ¼
X
o

PðoÞaQðoÞa=b�a  QðoÞ1�a=b

p
X
o

ðPðoÞaQðoÞa=b�aÞb=a
 !a=b


X
o

ðQðoÞ1�a=bÞb=ðb�aÞ
 !ðb�aÞ=b

¼
X
o

PðoÞbQðoÞ1�b

 !a=b


X
o

QðoÞ
 !ðb�aÞ=b

¼ ð1�DbðP;QÞÞa=b:
We now use the following simple analytic claim:

Claim A.4. For any 0pe; dp1 (excluding the case e ¼ 1 and d ¼ 0), ð1� eÞdp1� de:

ARTICLE IN PRESS

Z. Bar-Yossef et al. / Journal of Computer and System Sciences 68 (2004) 702–732 725



Proof. The cases d ¼ 0; 1 are trivial. So assume dAð0; 1Þ and consider the function f ðeÞ ¼
1� de� ð1� eÞd: We need to show f is non-negative in the interval ½0; 1�: Taking the derivative of

f ; we have: f 0ðeÞ ¼ dð1=ð1� eÞ1�d � 1Þ; since 1� ep1 and 1� d40; f 0ðeÞX0: Therefore, f is non-
decreasing in the interval ½0; 1�; implying its minimum is obtained at e ¼ 0: Since f ð0Þ ¼ 0; we have
that f ðeÞX0 for all eA½0; 1�: &

Since both DbðP;QÞ and a=b are in the interval ½0; 1� (and a=b40), we obtain the left inequality:

1�DaðP;QÞpð1�DbðP;QÞÞa=bp1� a
b
DbðP;QÞ:

For the other direction, note that DbðP;QÞ ¼ D1�bðQ;PÞ; by definition. Therefore, using the first

direction,

DbðP;QÞ ¼ D1�bðQ;PÞX1� b
1� a

D1�aðQ;PÞ ¼ 1� b
1� a

DaðP;QÞ: &

Proposition A.5 (Lin [Lin91]). For distributions P and Q on the same domain, DðP;QÞXh2ðP;QÞ:

The next proposition is used crucially in all our proofs to rephrase mutual information
quantities in terms of the Jensen–Shannon divergence, which then allows us, via Proposition A.5,
the use of the Hellinger distance or the Rényi divergences.

Proposition A.6. Let Fðz1Þ and Fðz2Þ be two random variables. Let Z denote a random variable with

uniform distribution in fz1; z2g: Suppose FðzÞ is independent of Z for each zAfz1; z2g: Then,

IðZ;FðZÞÞ ¼ DðFz1 ;Fz2Þ:

Proof. The mutual information between two random variables X and Y can be written as follows
(cf. [CT91]):

IðX ;YÞ ¼
X
xAX

Pr½X ¼ x�
X
yAY

Pr½Y ¼ y j X ¼ x�  log Pr½Y ¼ y j X ¼ x�
Pr½Y ¼ y� ;

where X and Y denote the supports of the distributions of X and Y ; respectively.
Let m denote the distribution of Y ; and for any xAX; let mx denote the distribution of Y

conditioned on the event fX ¼ xg: Then the above equation can be rewritten using KL-
divergence:

IðX ;YÞ ¼
X
xAX

Pr½X ¼ x� KLðmx jj mÞ ðA:1Þ

For the proof, we set X ¼ Z and Y ¼ FðZÞ: For each zAfz1; z2g; FðzÞ is independent of Z;
therefore, conditioned on the event fZ ¼ zg; the distribution of FðZÞ equals Fz: Moreover,
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because Z is uniformly distributed in fz1; z2g; we have FðZÞBðFz1 þ Fz2Þ=2: By Eq. (A.1),

IðZ;FðZÞÞ ¼
X

z¼z1;z2

Pr½Z ¼ z� KL Fz
Fz1 þ Fz2

2

����
����

� 	
¼ DðFz1 ;Fz2Þ: &

Finally, we state the lemma that we use in the proofs of information complexity lower bounds
of primitive functions; the lemma follows directly from Propositions A.6 and A.5.

Lemma A.7 (Lemma 6.2 restated). Let Fðz1Þ and Fðz2Þ be two random variables. Let Z denote a

random variable with uniform distribution in fz1; z2g: Suppose FðzÞ is independent of Z for each

zAfz1; z2g: Then, IðZ;FðZÞÞXh2ðFz1 ;Fz2Þ:

Appendix B. Proof of Lemma 7.3

Lemma B.1 (Lemma 7.3 restated). Let P be a randomized t-party one-way communication

protocol with inputs from f0; 1gt: Then, for any 0oeo1;Xt

i¼1

h2ðP0;Pei
ÞXðln2 2Þe2

8te
 h2ðP0;P1Þ:

Proof. In the proof we employ Rényi divergences Da [Rén60] (see Appendix A for the definition)
and as we remarked earlier, this proof will be a generalization of the proof of Lemma 7.4. By
Proposition A.3, we have for 1=2pao1 and distributions P and Q on the same domain,

1

2a
DaðP;QÞph2ðP;QÞp 1

2ð1� aÞDaðP;QÞ: ðB:1Þ

We fix a ¼ aðeÞ to be chosen later. Using 6, we have:Xt

i¼1

h2ðP0;Pei
ÞX 1

2a

Xt

i¼1

DaðP0;Pei
Þ; ðB:2Þ

DaðP0;P1ÞX2ð1� aÞ  h2ðP0;P1Þ: ðB:3Þ
It would thus suffice to prove the following counterpart of Lemma 7.2 for the Rényi divergence.

Lemma B.2. For any one-way protocol P; for any 0oeo1; if a ¼ 1� g2=ð4ð1þ gÞÞ; where g ¼
2e � 1; then

Pt
i¼1 DaðP0;Pei

ÞXð1=teÞDaðP0;P1Þ:

Assuming Lemma B.2, we will complete the proof of Lemma 7.3. By (B.2) and (B.3) and using
Lemma B.2,Xt

i¼1

h2ðP0;Pei
ÞX1� a

a
 1
te
 h2ðP0;P1Þ:
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By our choice of a;

1� a
a

X1� a ¼ g2

4ð1þ gÞX
g2

8
:

Since g ¼ 2e � 1Xeln 2; we have g2=8Xðe2 ln2 2Þ=8; and Lemma 7.3 follows. &

Proof of Lemma B.2. The proof goes along the same lines of the proof of Lemma 7.2, with
Hellinger distance replaced by the Rényi divergence. The inductive step is the following. Let u be
any internal node in T and let v and w be its left child and right child, respectively. Then,
DaðP0;PuÞpð1þ gÞ  ðDaðP0;PvÞ þDaðP0;PwÞÞ:
Similar to the proof of Lemma 7.2, suppose u ¼ e½a;b�; v ¼ e½a;c�; and w ¼ e½cþ1;b�; where c ¼

Iaþb
2
m: Define the sets of players A;B and the input assignments y; y0; z; z0 as before. Recall that

0 ¼ yz; u ¼ y0z0; v ¼ y0z; and w ¼ yz0:
For a probability vector p on O and a probability transition matrix M on O
 G; let p3M denote

the distribution on O
 G where ðp3MÞði; j Þ ¼ pðiÞ  Mði; j Þ: Applying Lemma 6.8, we have P0 ¼
Pyz ¼ py3Mz; Pu ¼ Py0z0 ¼ py03Mz0 ; Pv ¼ Py0z ¼ py03Mz; and Pw ¼ Pyz0 ¼ py3Mz0 : The lemma

now follows from the following property of the Rényi divergence, whose proof uses convexity and
analytical arguments. &

Lemma B.3. Let p; q be probability distributions on O; and let M;N be probability transition

matrices on O
 G; for some O and G: For any g40; if aX1� g2=ð4ð1þ gÞÞ; then

Daðp3M; q3NÞpð1þ gÞ  ðDaðp3M; q3MÞ þDaðp3M; p3NÞÞ:

Proof of Lemma B.3. We define bi to be the Rényi a-divergence between the ith row of M and the
ith row of N: Similar to the proof of Lemma 7.4, we can rewrite the three Rényi divergences as:

Daðp3M; q3NÞ ¼ Daðp; qÞ þ
P

iAO pa
i q1�a

i bi; Daðp3M; q3MÞ ¼ Daðp; qÞ; and Daðp3M; p3NÞ ¼P
iAO pibi: Thus, what we need to prove is:

Daðp; qÞ þ
X
iAO

pai q1�a
i bipð1þ gÞ  Daðp; qÞ þ

X
iAO

pibi

 !

3
X
iAO

pa
i q1�a

i bipg Daðp; qÞ þ ð1þ gÞ
X
iAO

pibi

 !

3
X
iAO

biðpai q1�a
i � ð1þ gÞpiÞpg Daðp; qÞ:

Let us denote by O1 the set of all iAO; for which pai q1�a
i Xð1þ gÞpi: Let O2 ¼ O\O1: Since bip1;

then

X
iAO

biðpai q1�a
i � ð1þ gÞpiÞp

X
iAO1

pa
i q1�a

i � ð1þ gÞpi:
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Thus, it suffices to prove:X
iAO1

ðpai q1�a
i � ð1þ gÞpiÞpg Daðp; qÞ:

Substituting Daðp; qÞ ¼ 1�
P

iAO pa
i q1�a

i in the RHS of the above inequality and rearranging the

terms, we need to show thatX
iAO1

ð1þ gÞpa
i q1�a

i þ
X
iAO2

gpa
i q1�a

i �
X
iAO1

ð1þ gÞpipg: ðB:4Þ

We note the following convexity property of the function f ðx; yÞ ¼ xay1�a:

Claim B.4. For any non-negative numbers x1;y;xn; y1;y; yn;Xn

i¼1

xa
i y1�a

i p
Xn

i¼1

xi

 !a


Xn

i¼1

yi

 !1�a

:

The proof follows directly from an application of Hölder’s inequality.
Define z ¼

P
iAO1

pi and w ¼
P

iAO1
qi: Applying Claim B.4 in Eq. (B.4), it suffices to prove the

following:

ð1þ gÞ  zaw1�a þ g  ð1� zÞað1� wÞ1�a � ð1þ gÞz � gp0: ðB:5Þ
This inequality is shown to be true using analytic tools in Lemma B.5 below. This completes the
proof. &

Lemma B.5. Let 0pz;wp1 be real numbers, and g be any non-negative real number. Then,

ð1þ gÞ  zaw1�a þ g  ð1� zÞað1� wÞ1�a � ð1þ gÞz � gp0;

provided aX1� g2=ð4ð1þ gÞÞ:

Proof. Define faðz;wÞ to be the left-hand-side of (B.5). For any given value of z we will maximize
faðz;wÞ as a function of w and show that this maximum is less than 0, if a satisfies the bound given

in the statement of the lemma. For simplicity of notation, we denote: a ¼ ð1þ gÞza; b ¼ gð1� zÞa

and d ¼ 1� a: We thus have: fa;zðwÞ ¼ awd þ bð1� wÞd � ð1þ gÞz � g:
dfa;z

dw
¼ adwd�1 � bdð1� wÞd�1:

Thus, the extremal point is at:

w� ¼ a1=ð1�dÞ

a1=ð1�dÞ þ b1=ð1�dÞ:

This point is a maximum in the interval ½0; 1�; since

d2fa;z

dw2
¼ adðd� 1Þwd�2 þ bdðd� 1Þð1� wÞd�2o0:
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Thus the value at the maximum point is:

fa;zðw�Þ ¼ a1=ð1�dÞ

ða1=ð1�dÞ þ b1=ð1�dÞÞd
þ b1=ð1�dÞ

ða1=ð1�dÞ þ b1=ð1�dÞÞd
� ð1þ gÞz � g

¼ða1=ð1�dÞ þ b1=ð1�dÞÞ1�d � ð1þ gÞz � g

¼ðð1þ gÞ1=az þ g1=að1� zÞÞa � ð1þ gÞz � g:

We want this maximum to be non-positive for every zA½0; 1�: That is,

ðð1þ gÞ1=az þ g1=að1� zÞÞapð1þ gÞz þ g

3ðð1þ gÞz þ gÞ1=a � ð1þ gÞ1=az � g1=að1� zÞX0: ðB:6Þ

Let gaðzÞ be the left-hand side of (B.6), and for simplicity of notation, let c ¼ 1=a: We would like
to show that for an appropriate choice of a; gaðzÞX0 for all zA½0; 1�: Note that gað0Þ ¼ 0: Thus, it
suffices to show that g is non-decreasing in the interval ½0; 1�:

g0ðzÞ ¼ cð1þ gÞðð1þ gÞz þ gÞc�1 � ð1þ gÞc þ gcXcð1þ gÞgc�1 � ð1þ gÞc þ gc;

where the last inequality follows from the fact zX0: Thus g would be non-decreasing if:

cð1þ gÞgc�1 � ð1þ gÞc þ gcX0 3 c
g

1þ g

� 	c�1

�1þ g
1þ g

� 	c

X0:

Write Z ¼ g=ð1þ gÞ: Note that 0oZo1: We thus need to prove:

Zc þ cZc�1 � 1X0 3 Zc�1ðZþ cÞ � 1X0

( Zc�1ð1þ ZÞ � 1X0 3 Zc�1
X

1

1þ Z
:

Since Zo1; 1=ð1þ ZÞpe�Z=2: Thus it suffices that:

Zc�1
Xe�Z=2 3 c� 1p

Z
2 lnð1=ZÞ:

Therefore, we need a ¼ 1=c to satisfy

aX
1

1þ Z
2 lnð1=ZÞ

:

Thus, it suffices that

aX1� Z
4 lnð1=ZÞ ¼ 1� g

4ð1þ gÞ lnðð1þ gÞ=gÞ:
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And for the last inequality to hold it suffices that

aX1� g2

4ð1þ gÞ: &
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Canada, 2002, pp. 370–379.

[AMS99] N. Alon, Y. Matias, M. Szegedy, The space complexity of approximating the frequency moments,

J. Comput. System Sci. 58 (1) (1999) 137–147.

[BCKO93] R. Bar-Yehuda, B. Chor, E. Kushilevitz, A. Orlitsky, Privacy, additional information, and

communication, IEEE Trans. Inform. Theory 39 (6) (1993) 1930–1943.

[BFS86] L. Babai, P. Frankl, J. Simon, Complexity classes in communication complexity theory (preliminary

version), in: Proceedings of the 27th IEEE Annual Symposium on Foundations of Computer Science

(FOCS), Toronto, ON, Canada, 1986, pp. 337–347.

[Bry86] R.E. Bryant, Graph-based algorithms for Boolean function manipulations, IEEE Trans. Comput. 35

(1986) 677–691.

[CKS03] A. Chakrabarti, S. Khot, X. Sun, Near-optimal lower bounds on the multi-party communication

complexity of set-disjointness, in: Proceedings of the 18th Annual IEEE Conference on Computational

Complexity (CCC), Aarhus, Denmark, 2003.

[CSWY01] A. Chakrabarti, Y. Shi, A. Wirth, A.C-C. Yao, Informational complexity and the direct sum problem for

simultaneous message complexity, in: Proceedings of the 42nd IEEE Annual Symposium on Foundations

of Computer Science (FOCS), Las Vegas, NV, 2001, pp. 270–278.

[CT91] T.M. Cover, J.A. Thomas, Elements of Information Theory, Wiley, New York, 1991.

[FKSV02] J. Feigenbaum, S. Kannan, M. Strauss, M. Viswanathan, An approximate L1-difference algorithm for

massive data streams, SIAM J. Comput. 32 (2002) 131–151.

[GGI+02] A. Gilbert, S. Guha, P. Indyk, Y. Kotidis, S. Muthukrishnan, M. Strauss, Fast, small-space algorithms

for approximate histogram maintenance, in: Proceedings of the 34th Annual ACM Symposium on

Theory of Computing (STOC), Montréal, QC, Canada, 2002, pp. 389–398.
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Canada, 2002, pp. 360–369.

[Weg87] I. Wegener, The Complexity of Boolean Functions, Wiley–Teubner Series in Computer Science, Wiley,

New York, 1987.

[Yao79] A.C-C. Yao, Some complexity questions related to distributive computing, in: Proceedings of the 11th

Annual ACM Symposium on Theory of Computing (STOC), Atlanta, CA, 1979, pp. 209–213.

ARTICLE IN PRESS

Z. Bar-Yossef et al. / Journal of Computer and System Sciences 68 (2004) 702–732732


	An information statistics approach to data stream and communication complexity
	Introduction
	Results
	Methodology

	Preliminaries
	Data stream lower bounds
	Frequency moments
	Lp distances

	Information complexity
	A direct sum theorem for conditional information complexity
	Information complexity lower bound for primitives
	Statistical structure of randomized communication protocols
	Proofs of Lemmas 6.3, 6.4, and 6.5


	Multi-party set-disjointness
	Linfin distance
	Acknowledgements
	Measures of information and statistical differences
	Proof of Lemma 7.3
	References


